Electron Transfer Produces n-Type Colloidal Semiconductor Nanocrystals
نویسندگان
چکیده
منابع مشابه
Excited-State Dynamics in Colloidal Semiconductor Nanocrystals
Colloidal semiconductor nanocrystals have attracted continuous worldwide interest over the last three decades owing to their remarkable and unique size- and shape-, dependent properties. The colloidal nature of these nanomaterials allows one to take full advantage of nanoscale effects to tailor their optoelectronic and physical-chemical properties, yielding materials that combine size-, shape-,...
متن کاملElectronic Impurity Doping of Colloidal Semiconductor Nanocrystals
Doping is extremely important for controlling the electronic conductivity of bulk semiconductors. However, very few examples exist where impurities that have been incorporated into colloidal semiconductor nanocrystals affect their electronic properties. Here we will discuss the challenges in this area as well as recent progress. In particular, we will describe an approach to lightly dope semico...
متن کاملMany-Body Processes in the Photophysics of Colloidal Semiconductor Nanocrystals
In this work we have experimentally studied several aspects of two Coulomb processes that change the number of electrons and holes in colloidal semiconductor nanocrystals (NCs). Carrier Multiplication (CM) is the production of additional electron-hole pairs by collision of a highly excited carrier with valence electrons. Efficient CM would improve the performance of solar energy conversion devi...
متن کاملFormation of Colloidal Semiconductor Nanocrystals - The Aspect of Nucleation
The present work describes different techniques to control some major parameters of colloidal nanocrystals. The individual techniques rely on the manipulation of the nucleation event. The sensitive control of the nanocrystals’ size and shape is discussed. Furthermore the formation of hybrid nanocrystals composed of different materials is presented. The synthesis technique for the production of ...
متن کاملCharge-controlled magnetism in colloidal doped semiconductor nanocrystals.
Electrical control over the magnetic states of doped semiconductor nanostructures could enable new spin-based information processing technologies. To this end, extensive research has recently been devoted to examination of carrier-mediated magnetic ordering effects in substrate-supported quantum dots at cryogenic temperatures, with carriers introduced transiently by photon absorption. The relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MRS Bulletin
سال: 2001
ISSN: 0883-7694,1938-1425
DOI: 10.1557/mrs2001.5